Практика использования моно и поликристаллических фотомодулей в солнечных батареях Школа для электрика все об электротехнике и электронике

Если вы заинтересовались солнечной энергетикой, то в изучении этой темы перед вами встанет необходимостью выбора солнечных панелей. И вы непременно столкнётесь с двумя основными типами солнечных панелей: монокристаллическими и поликристаллическими. Оба типа этих солнечных батарей прекрасно подходят для использования в солнечных электростанциях, но в них есть некоторые принципиальные отличия, о которых нужно знать.

Конструкция и применение

Солнечная батарея — совокупность элементов, которые служат для получения электрической энергии из световой. Принцип действия основан на фото-электрическом эффекте — за счет преобразования солнечного света в электроток. Основные компоненты системы:

  • Полупроводник. Как правило, моно- или поликристаллический кремний, дополненный другими химическими соединениями, которые способствуют образованию фото-электрического эффекта. Состоит из 2 материалов с разной проводимостью, за счет чего между ними происходит постоянное перемещение электронов (p-n-переход).

  • Прокладка — тончайшее покрытие, которое препятствует свободному движению электронов, находится между слоями полупроводника.

  • Источник электроэнергии, при подключении которого к прокладке электроны приобретают способность ее преодолевать — в результате этого возникает упорядоченное движение заряженных частиц, собственно, генерируется электрический ток.

  • Аккумулятор — накапливает полученную электроэнергию.

  • Контроллер заряда — выполняет функцию распределителя потоков электрической энергии.

  • Инвертор — нужен для трансформации постоянного тока в переменный.

  • Стабилизатор напряжения.

Для использования солнечных батарей в качестве основного источника электроэнергии важно, чтобы количество ясных дней преобладало над пасмурными. По этой причине в большинстве регионов нашей страны подобные установки используют преимущественно как вспомогательные.

Особенности монокристаллических панелей

Монокристаллическая система представляет собой десятки фотоэлементов, объединенных в единую панель. Кристаллы получают путем выращивания — по методу Чохальского. Каждый из них закреплен на стеклопластиковой основе, которая защищает от пыли и влажности. Материал элементов — очищенный кремний. Светочувствительные ячейки ориентированы в одну сторону, за счет чего КПД монокристаллических панелей выше, чем поликристаллических. Другие особенности:

  • продолжительность непрерывной эксплуатации — не менее 20 лет;

  • КПД монокристаллов — в среднем до 20–22 % (без учета потерь полученной электроэнергии), в отдельных случаях — до 20 %;

  • уровень поглощения выше, чем в поликристаллических панелях;

Единственный минус монокристаллических систем — более высокая стоимость, впрочем, затраты на их приобретение быстро окупаются. При дефиците площади, когда крайне важно добиться максимального количества энергии с каждого квадратного метра, подобное решение предпочтительнее.

Курьезы солнечной энергетики

В свете вышесказанного особенно забавными выглядят так называемые «обзоры», которые можно найти в youtube.

Автор сравнивает модули разных поколений. Моно — с 2 шинами, поли — с 3 шинами. При переходе от 2 к 3 шинам, также как и переходе к стандартным сейчас 4 токосъемным шинам, эффективность солнечных элементов растет на несколько процентов. Потому разница в мощности — не из-за типа кристалла, а из-за поколения и качества исполнения солнечных элементов. Тем более, что у торговой марки, которую «обозревает» автор, источник солнечных элементов неизвестен, и от партии к партии могут применяться элементы различных производителей.

Иногда на просторах интернета можно прочитать и такой «бред»:

Наиболее эффективны в пасмурную погоду кремниевые поликристаллические батареи, хорошо поглощающие не только прямое солнечное излучение, но и рассеянный свет, проникающий через облака. Связано это с тем, что в поликристаллических элементах кристаллы кремния ориентированы не упорядоченно, а хаотически, что, с одной стороны, снижает эффективность батареи при прямом падении солнечного излучения, а, с другой, снижает ее незначительно при характерном для пасмурной погоды рассеянном освещении.

Что такое поликристаллическая батарея

Поликристаллические солнечные батареи изготавливаются по другой технологии. Она значительно проще, что делает методику более предпочтительной как для производителей, так и пользователей. Несколько упрощенно, технологический процесс состоит из нескольких этапов:

  • нагрев кремния до точки плавления
  • розлив полученного расплава по формам
  • нарезка остывших брикетов на тонкие пластинки
  • шлифовка, нанесение токопроводящих дорожек
  • нанесение слоя защиты

Отсутствие длительного процесса естественного выращивания кристалла значительно ускоряет и упрощает процесс изготовления, но качество панелей получается намного ниже. Вся площадь фотоэлемента разделена на мельчайшие частицы. ориентированы в разные стороны. От этого процесс образования электронов при попадании фотонов света делается менее интенсивным.

КПД, который способны продемонстрировать поликристаллические панели, не превышает 12-18 %, что заметно ниже показателя монокристаллических компонентов.

Отличить внешне, монокристалл или поликристалл является базовым компонентом, очень легко. Если первый имеет черный цвет, то модули второго типа синие и не оснащены никакими дополнительными элементами на лицевой поверхности. В зависимости от производителя и особенностей технологии оттенок может быть более светлым или темным, но он всегда синий.

Преимущества

Если возникает вопрос — монокристаллические и поликристаллические солнечные модули, что лучше — надо детально рассмотреть их достоинства. Преимуществами поликристаллов считают:

  • более быстрый и экономичный способ изготовления
  • отставание по всем параметрам от монокристаллов не слишком значительное
  • стоимость поликристаллических модулей примерно на 20 % ниже, что при покупке больших партий создает большую экономию

Необходимо учитывать, что у некоторых производителей (например, у одного из лидеров мирового рынка компании Trina Solar) более высокие показатели демонстрируют солнечные панели поликристаллические. Они превосходят монокристаллы на 2,6 % по производительности, хотя по другим параметрам они примерно равны. Однако, у других производителей такого первенства не наблюдается.

Недостатки

К недостатками поликристаллических панелей принято относить:

  • КПД этих конструкций составляет всего 12-18 %
  • уровень производительности ниже
  • долговечность поликристаллов примерно такая же, но со временем показатель производительности заметно падает
  • размер панелей на 20 % больше, чем у монокристаллических модулей той же производительности. Это играет важную роль при необходимости разместить их в условиях ограниченного пространства — на крыше или иной поверхности

Необходимо учитывать, что недостатки поликристаллических панелей не настолько существенны, чтобы пользователи в массовом порядке отказались от их применения. Наоборот, спрос на эти конструкции гораздо выше, чем на все альтернативные разновидности. Он вызван оптимальным на сегодняшний день соотношением стоимости и параметров модулей.

Стоимость

Цены на поликристаллические солнечные батареи примерно на 10-15 % ниже, чем на монокристаллические модули. Это позволяет получить заметную экономию при создании полнофункциональной СЭС с набором приборов и большим количеством панелей.

Учитывая, что долговечность поликристаллических солнечных батарей составляет около 30 лет (хотя достоверной статистики на этот счет пока никто не собрал), общий порядок цен способствует однозначному выбору этих разновидностей. Кроме того, периодически панели приходится менять, и в этом вопросе более доступная стоимость определяет выбор пользователей. 100-ваттная панель стоит около 6000 руб, а 300-ваттная — около 18000 руб. Порядок цен зависит от производителя, у некоторых компаний ценовые запросы гораздо выше.

Физические характеристики кристаллического кремния

Какие полотенца для бани лучше анализ предложений на рынке продаж

Элементы для солнечных панелей изготавливаются из полупроводниковых материалов. Среди них несомненным лидером является кремний, который служит основным материалом для производства панелей.

По своим физическим свойствам кремний бывает монокристаллический, поликристаллический, мультикристаллический и аморфный. Такое разнообразие структур дает ему несомненное преимущество перед другими видами полупроводников, и делает незаменимым в производстве микроэлектроники и электронной техники. То же самое в полной мере касается и солнечной энергетики.

Практика использования моно и поликристаллических фотомодулей в солнечных батареях Школа для электрика все об электротехнике и электронике

Кремний относится к наиболее распространенным химическим элементом, а его запасы практически неограниченны. Данный материал отличается доступностью, дешевизной и экологической чистотой. В природе он известен как двуокись кремния, а в натуральном виде представлен речным и кварцевым песком, кремнем, кварцем и кварцитами. Кристаллическая решетка кремния похожа на алмазную, поэтому он очень хрупкий и приобретает пластичность лишь при температуре свыше 800 градусов.

При идеальной кристаллической структуре и отсутствии примесей, в температурных условиях абсолютного нуля, кремний можно рассматривать как изолятор. При повышении температуры в нем возникает явление так называемой собственной проводимости. В этом случае электрический ток возникает за счет свободных электронов или дырок, представляющих электронную или дырочную проводимость.

Помещенный в комнатную температуру, чистый кремний ведет себя как химически инертное вещество. Однако, если температура повышается, он начинает вступать в активную реакцию с другими элементами. Особую активность данный материал проявляет в расплавленном виде, создавая серьезные проблемы при его очистке до требуемого уровня.

Солнечные элементы на основе кремния изготавливаются из тонких кремниевых пластинок, нарезаемых на установленную толщину. Предварительно они подвергаются различным видам обработки, и в результате сложных технологических процессов получается нужный материал.

Монокристаллические солнечные батареи

За последние годы, в соответствии с данными EPIA (European Photovoltaic Industry Association – союз производителей устройств для выработки энергии фотоэлементами) в общем числе произведенных солнечных батарей 52,9% – поликристаллические, 33,2% – монокристаллические, остальные – либо аморфные, либо с иным типом кремниевых элементов. Таким образом, по объему производства пока доминируют солнечные батареи на поликристаллах. Хорошо ли это, и столь уж необходимо ратовать за более быстрые темпы внедрения именно монокристаллических панелей?

Чтобы ответить на этот вопрос, рассмотрим конструктивные особенности последних.

Материалы, функционирование и показатели эффективности

Монокристаллические солнечные батареи представляют собой панель, собранную из нескольких отдельных силиконовых фотомодулей (обычно их не меньше десяти). Эти элементы монтируются в прочный корпус, который обеспечивает соответствующую защиту фотомодулей, как от пыли, так и от атмосферных осадков.

Внешний вид монокристаллического фотомодуля представлен на рис. 1, а самой батареи – на рис.2.

Практика использования моно и поликристаллических фотомодулей в солнечных батареях Школа для электрика все об электротехнике и электронике

Практика использования моно и поликристаллических фотомодулей в солнечных батареях Школа для электрика все об электротехнике и электронике

В чём преимущества подобной компоновки?

  • Такая панельная конструкция допускает устойчивую эксплуатацию солнечных батарей при самых различных условиях: на суше, и на море, в горной, либо равнинной местности и т.д.
  • Монокристаллические солнечные батареи комплектуются из отдельных модулей с применением кремния сверхвысокой чистоты. После «выращивания» монокристалла, который получается методом вытяжки из жидкого кремнийсодержащего расплава, он разрезается на части толщиной, не превышающей 0,4 мм. Далее следует обработка этих кристаллов с целью придания им формы, которая требуется для встраивания в фотоэлектрическую панель.
  • Наличие единой фотоэлектрической панели резко увеличивает коэффициент полезного действия монокристаллических батарей, который достигает 22% (панели, используемые в космических технологических решениях, имеют ещё более высокий КПД – до 38%, но практическое применение космических технологий в практику сдерживается высокой себестоимостью производства). Для сравнения – поликристаллические панели имеют КПД не выше 17…18%.

В чём причина высокой эффективности монокристаллических солнечных батарей?

Поликристаллические панели проигрывают монокристаллическим благодаря тому, что при их производстве применяется не только первичный, более «чистый» кремний, но также и его отходы, извлекаемые при утилизации отработанных солнечных батарей. Кроме того, недостаток поликристаллического кремния заключается в том, что, у него существуют зоны зернистых границ (см. рис. 3), на которых фотоэлектрическое преобразование энергии солнечного излучения в электрическую энергию происходит значительно хуже.

Таким образом, при одинаковой заявленной мощности габаритные размеры монокристаллических солнечных батарей будет меньше, чем поликристаллических.

Практика использования моно и поликристаллических фотомодулей в солнечных батареях Школа для электрика все об электротехнике и электронике

Почему же производство поликристаллических панелей по-прежнему происходит в значительных масштабах?

Всё пока определяется стоимостью таких панелей, ибо монокристаллические солнечные батареи нуждаются в значительно более высококачественном кремнии. Хотя, если пересчитать на удельную мощность (соотношение цены панели к вырабатываемой ею солнечной энергии), то монокристаллические панели проигрывают поликристаллическим не более 10%. Поэтому, с усовершенствованием технологии получения высокочистых монокристаллов кремния, перспективность использования именно монокристаллических солнечных батарей станет очевидной.

Ведущие производители монокристаллических солнечных батарей

Наибольшими показателями надёжности и эффективности обладают изделия, производимые следующими фирмами:

  • Elkem A/S Silicon Metal Division (Норвегия);
  • Sdad Espanola de Carburos Metalicos SA (Испания);
  • Eckart GmbH and Co (Германия);
  • Globe Metallurgical (США);
  • Dow Chemical Corporation (Южная Корея).

На отечественном рынке имеются также панели, реализуемые компанией

  • “Солнечный ветер” (Краснодар), с монокремнием от Nitol Solar (Россия) и с комплектующими из Германии;
  • Хевел ( Новочебоксарск);

Технические характеристики одной из лучших монокристаллических панелей SolGen 200 Вт/24 В (США) составляют:

  • номинальная мощность 200 Вт;
  • габаритные размеры (длина*ширина*высота) 1580*808*35 мм;
  • диапазон температурной эксплуатации от -50°C до +90°C;
  • гарантийный срок службы панелей не менее 30 лет;
  • предоставляется 5-летняя гарантия на всю систему.

В чём же разница?

Итак, если имеется монокристаллическая и поликристаллическая солнечная панель, разница между ними находится в плоскости себестоимости и эффективности. Изготовление монокристаллов обходится дорого и требует большого количества времени. Другой тип панелей производится намного быстрее, что делает себестоимость гораздо ниже. Соответственным образом отличаются технические характеристики модулей.

Рассматривая поликристаллические или монокристаллические солнечные батареи, следует учитывать эти факторы и принимать во внимание условия эксплуатации модулей. Монокристаллы не переносят загрязнения лицевой поверхности, тогда как поликристаллы к этому более устойчивы. Сравнение этих видов производилось в лабораторных условиях, которые на практике организовать невозможно.

Производство кремниевых кристаллов

Производство солнечных панелей начинается с изготовления моно- или поликристаллических кремниевых элементов. Монокристаллический кремний требует более сложной и трудоемкой технологии.

Практика использования моно и поликристаллических фотомодулей в солнечных батареях Школа для электрика все об электротехнике и электронике

Его создание осуществляется в несколько этапов:

  • Многоступенчатая очистка кварцевого песка, содержащего большое количество диоксида кремния. В результате очистки из него удаляется кислород. Этот процесс выполняется при высокой температуре, обеспечивающей плавление и последующий синтез материала с другими химическими веществами.
  • Далее, из очищенного кремния выращиваются кристаллы. Вначале отдельные куски чистого материала закладываются в тигель, внутри которого они разогреваются и плавятся. В расплавленную массу помещается затравка, используемая в качестве основы будущего кристалла. Атомы кремния, оседая слоями на этой затравке, постепенно принимают четкую упорядоченную структуру. Конечным результатом этого продолжительного действия становится крупный однородный кристалл.
  • На следующем этапе монокристалл измеряется, калибруется и обрабатывается до требуемой формы. На выходе он получается в форме цилиндра, не совсем удобной для последующей обработки. Поэтому заготовка в сечении превращается в квадрат с закругленными углами. Затем, готовый монокристалл при помощи стальных нитей разрезается на отдельные тонкие пластинки. После этого выполняется их очистка, проверка качества и работоспособность.
  • Способность вырабатывать электроэнергию появляется у кремния после добавления в него бора и фосфора. Сторона п-типа покрыта фосфором, обеспечивающим получение свободных электронов. На стороне р-типа располагается слой бора с дырочной проводимостью. Таким образом, между двумя элементами создается р-п-переход. При попадании на ячейку солнечного света, из атомной решетки начнется усиленный выход электронов и дырок. Они распространяются по всему электрическому полю и устремляются к своему заряду. Сбор полученного тока осуществляется с помощью проводников, припаянных с каждой стороны пластины.
  • На завершающей стадии пластинки соединяются в цепочки, после чего они собираются в более крупные блоки. Мощность батареи зависит от количества ячеек. При их последовательном соединении возникает определенное значение напряжения, а при параллельном – сила тока. Для защиты от внешних воздействий ячейки покрываются пленкой, переносятся на стекло и устанавливаются в рамку прямоугольной формы. В конце сборки проверяются вольтамперные характеристики, после чего панель готова к эксплуатации.

Особенности поликристаллических панелей

Поликристаллы получают путем постепенного охлаждения расплавленного кремния. Такая технология обходится дешевле, чем искусственное выращивание монокристаллов, правда, на краях поликристаллов может присутствовать зернистость, что приводит к снижению их эффективности. Принципиальное отличие от монокристаллических — неоднородная структура и окрас. Это обусловлено примесями и тем, что в системе содержатся кристаллы разного типа. Особенности:

  • КПД меньший, чем у монокристаллических элементов — до 17-18 %;

  • доступная цена — производство поликристаллических панелей менее затратное;

  • скорость утраты мощности (деградация) поликристаллов меньше, чем у монокристаллов.

Таким образом, если стоит задача получить определенное количество электроэнергии, при использовании поликристаллических панелей потребуется большая площадь. Есть мнение, что их выгоднее использовать в регионах с преобладанием пасмурных дней — при недостаточном количестве солнца поликристаллы дают больше энергии, чем монокристаллы.

Монокристаллические солнечные панели

Практика использования моно и поликристаллических фотомодулей в солнечных батареях Школа для электрика все об электротехнике и электронике

Практика использования моно и поликристаллических фотомодулей в солнечных батареях Школа для электрика все об электротехнике и электронике

Монокристаллические солнечные панели известны многие годы. Эти панели являются наиболее эффективными и надежными в преобразовании энергии солнца

Каждый модуль сделан из одного кристалла кремния, и более эффективен, хотя и дороже чем те что используются в производстве поликристаллических панелей, которые, кстати, появились позднее. Обычно их можно распознать по цвету – черному или переливающемуся синему.

Как понятно из названия, в производстве используется один – очень чистый кристалл кремния. Процесс изготовления похож на изготовление полупроводников: диоксид кремния, либо измельченный кварц помещают в электродуговую печь. Под действием тепла образуется углекислый газ и расплавленный кремний. Этот простой процесс дает кремний 99% чистоты. Но в солнечной энергетике требуется более высокий уровень чистоты. Это достигается многократным повтором данного процесса.

ПРЕИМУЩЕСТВА МОНОКРИСТАЛЛИЧЕСКИХ СОЛНЕЧНЫХ ПАНЕЛЕЙ:

ДОЛГОВЕЧНОСТЬ

В источниках информации указаны разные сроки использования монокристаллических панелей. Некоторые производители анонсируют срок эксплуатации до 50 лет.

Считается, что КПД монокристаллических панелей уменьшается на 0,5% в год, что является очень хорошим результатом.

ЭФФЕКТИВНОСТЬ

Если Ваша задача «снять» как можно больше энергии с единицы площади, то лучше выбрать монокристаллические панели. КПД монокристаллических элементов составляет 19-24%, соответственно, КПД монокристаллических батарей – 16-18%. Эти характеристики делают их предпочтительнее для использования на территории России.

МЕНЬШАЯ ЗАВИСИМОСТЬ ОТ ТЕМПЕРАТУРЫ

Как было написано выше – КПД панелей находится в пределах – до 20%, оставшаяся солнечная энергия идет на нагрев поверхности панели, разогревая её до 50-60 градусов Цельсия. С увеличением температуры на 1 гр. эффективность панели снижается примерно на 0,5, эта зависимость не линейна.

Так как монокристаллические панели более эффективны, то и на нагреваются они меньше, тем самым КПД не так сильно уменьшается из-за нагрева.

Ну и установив у себя на крыше данные панели Вы сможете рассказывать соседу, что

Из чего делают пленочные батареи

Разработка пленочных батарей обусловлена:

  • Потребностями в снижении стоимости солнечных батарей.
  • Необходимостью в улучшении производительности и технических характеристик.

На основе CdTe

Исследования теллурида кадмия, как светопоглощающего материала для солнечных батарей начались еще в 70-х годах. В то время его рассматривали как один из оптимальных вариантов для использования в космосе, сегодня же батареи на основе CdTe являются одними из самых перспективных в земной солнечной энергетике. Так как кадмий является кумулятивным ядом, то дискуссии возникают лишь по одному вопросу: токсичен или нет? Но исследования показывают, что уровень кадмия, высвобождаемого в атмосферу, ничтожно мал, и опасаться его вреда не стоит. Значение КПД составляет порядка 11%. Согласитесь, цифра небольшая, зато стоимость ватта мощности таких батарей на 20-30% меньше, чем у кремниевых.

На основе селенида меди-индия

Как понятно из названия, в качестве полупроводников используются медь, индий и селен, иногда некоторые элементы индия замещают галлием. Такая практика объясняется тем, что большая часть производящегося на сегодня индия требуется для производства плоских мониторов. Именно поэтому с целью экономии индий замещают на галлий, который обладает схожими свойствами. Пленочные солнечные батареи на основе селенида меди-индия имеют КПД равный 15-20%. Следует иметь в виду, что без использования галлия эффективность солнечных батарей возрастает примерно на 14%.

На основе полимеров

Разработка данного вида батарей началась сравнительно недавно. В качестве светопоглощающих материалов используются органические полупроводники, такие как полифенилен, углеродные фуллерены, фталоцианин меди и другие. Толщина пленок составляет 100 нм. Полимерные солнечные батареи имеют на сегодняшний день КПД всего 5-6%. Но их главными достоинствами считаются:

  • Низкая стоимость производства.
  • Легкость и доступность.
  • Отсутствие вредного воздействия на окружающую среду.

Применяются полимерные батареи в областях, где наибольшее значение имеет механическая эластичность и экологичность утилизации.
В таблице 2 приведены обобщенные данные о КПД разных видов солнечных батарей.

Таблица 2

КПД солнечных элементов, выпускаемых в производственных масштабах
Моно 17-22%
Поли 12-18%
Аморфные 5-6%
На основе теллурида кадмия 10-12%
На основе селенида меди-индия 15-20%
На основе полимеров 5-6%

Надеемся, что теперь Вы ясно представляете себе, из чего делают поли- и монокристаллические, пленочные, полимерные солнечные батареи и другие. Эта информация поможет Вам сделать правильный выбор при покупке солнечных модулей. Ведь система энергопотребления, основанная на солнечной энергии, является долговременной инвестицией. Переходя на альтернативные, в частности, солнечные источники энергии, Вы не только снижаете свои затраты на потребляемые энергоресурсы, но и делаете ощутимый вклад в чистоту окружающей нас среды.

Статью подготовила Абдуллина Регина

Солнечные панели из монокристаллов

Характерной особенностью монокристаллических солнечных панелей является однородный цвет фотоэлементов, создающий точно такой же внешний вид у всей конструкции. Цветовая гамма определяется размерами зерен выращенного монокристалла. Выращивание кремниевых слитков осуществляется из природного кремния, после чего кристаллическая решетка материала приобретает необходимую структуру и частоту.

Монокристаллические солнечные батареи считаются наиболее эффективными и применяются на различных объектах. Они имеют свои плюсы и минусы, которые следует учитывать при выборе той или иной конструкции.

Практика использования моно и поликристаллических фотомодулей в солнечных батареях Школа для электрика все об электротехнике и электронике

Среди положительных качеств можно отметить следующие:

  • Высокая эффективность изделий, благодаря высокому качеству структуры материала. Это позволяет довести коэффициент полезного действия до 17-22%.
  • Возможность уменьшения размеров солнечных панелей без потерь мощности по сравнению с другими типами батарей с такими же техническими характеристиками. Таким образом, чтобы получить электроэнергию в количестве 10 ватт, потребуется монокремниевая панель с меньшими размерами.
  • Максимальный срок эксплуатации, превышающий этот показатель у других изделий. При условии соблюдения всех правил и норм, батарея прослужит не менее 25 лет.

Серьезным недостатком этих конструкций является их высокая стоимость. Для многих пользователей данный фактор имеет решающее значение при выборе изделия, несмотря на все положительные качества. Поэтому нередко выбираются более дешевые поликристаллические панели, хотя и не такие эффективные.

При незначительной загрязненности или недостаточном освещении, когда отдельные элементы перестают участвовать в процессе, наступает резкая потеря производительности всей системы. В связи с этим рекомендуется использовать инверторы, способные выровнять параметры цепи и ликвидировать последствия неравномерного освещения.


Поделитесь в соц.сетях:

Оцените статью:

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (Пока оценок нет)
Загрузка...

Добавить комментарий